
(� 2 test, � 2 = 20.17,P < 0.0001; Fig. 1G). All but one of the orga-
nizations surveyed plant propagules at restoration sites with, rather
than without, spacing. This focus on planting designs that minimize
the potential for negative interactions among outplants has per-
sisted despite over two decades of ecological research showing
positive interactions (e.g., mutualisms, facilitations) play a critical
role in controlling the structure and function of ecological com-
munities, especially under conditions of elevated physical stress (30–
32) where neighboring plants can ameliorate physical stress for each
other, including anoxic stress and wave-induced erosion stress in
seagrasses, marshes, and mangroves (33–35). Indeed, a global
metaanalysis of over 700 studies revealed that positive species in-
teractions are most important for organism success and community
persistence and recovery as physical stress increases (32), a sce-
nario that mirrors intense abiotic stress conditions that are found
on bare substrate after a coastal ecosystem has been degraded,
which then is often targeted for restoration efforts (29, 31).

In this study, we experimentally test whether a restoration design
that is focused on maximizing positive interactions among out-
planted propagules instead of the current paradigm of minimizing
potential competitive interactions can increase a project’s yield

with no added cost or resource input. We tested our idea on
mudflats on the coasts of both Florida and The Netherlands
and did so for the following reasons. First, in both locations, salt
marshes once dominated protected shorelines but have recently
experienced intense die-off due to human-induced stressors (36,
37). Second, salt marsh restoration is a primary focus of non-
governmental and governmental organizations in both locations,
so experiments can inform local efforts for coastal conservation.
Finally, we wanted to examine if results are general across two
systems that contrast in abiotic and biotic variables, including
temperature, flooding, and dominant marsh grass species. At both
sites, we tested whether salt marsh propagules planted in clumped
vs. dispersed configurations experienced higher growth and ex-
pansion rates and how those responses varied across marsh ele-
vations. Although theoretical papers have called for the inclusion
of positive interactions into restoration designs (27–29) and many
studies have shown that increased propagule size or density can
increase recovery and/or restoration success (38, 39), few resto-
ration projects or studies to date have tested impacts of designs
that harness positive interactions on restoration success while
holding the overall number of propagules constant [i.e., conser-
vation resources are constant; but see O’Brien and Zedler (40) for
a study that assessed impacts of propagule spacing, with closest
spacing being 10 cm]. We accomplished this by arranging the same
number (i.e., 9) of out-planted propagules in either a dispersed or
clumped (i.e., no space between outplants) configuration in the
same plot area (1.5× 1.5 m; Fig. 2) and comparing plot-level plant
performance between these two different configurations.

Our idea that restoration propagules planted in clumps will
mutually benefit each other is based on the fact that positive in-
teractions in marsh plants can occur due to alleviation of physical
stress by immediately neighboring plants, such as anoxia and
erosion. Firstly, plants in coastal wetlands shunt oxygen to their
roots to reduce anoxia stress in sediments caused by waterlogging
(33–35). When plants are in close proximity to one another, there
is a shared group benefit as oxygen“ leaks” from shallow roots into
sediments that then becomes available to neighboring plants (41,
42). Secondly, grasses planted closely together can mitigate ero-
sion stress generated by waves or high currents (43, 44). This fa-
cilitative interaction occurs because belowground plant material
on the edge of marsh culms or established marshes absorbs most
of the wave and/or current stress and thus reduces erosion around
more interior marsh plants (43, 44).

Results
We found that clumped configuration positively affected both
survival and growth parameters of out-planted marsh propa-
gules (i.e., biomass, stem density, and expansion), particularly
at low elevations where physical stress was higher. In Florida,
survivorship of transplanted plugs was significantly affected by
configuration (z = Š6.76, P < 0.0001) and its interaction with
elevation (z = Š3.78,P = 0.0002), but not by elevation alone
(z = 0.00, P = 1.00) (Fig. 2E). At low elevations, average survi-
vorship in dispersed treatments was 58%, and increased to 100%
in clumped treatments, whereas at high elevations average survi-
vorship in dispersed treatments was 84%, and increased to 100%
in clumped treatments. In The Netherlands, survivorship of trans-
planted plugs was significantly affected by elevation (z = 6.65,
P < 0.0001) and its interaction with configuration (z = Š4.54,P <
0.0001), but not by configuration alone (z = Š3.78, P = 0.72)
(Fig. 2G). At low elevations, average survivorship in dispersed
treatments was 56%, and increased to 100% in clumped treatments,
whereas at high elevations clumping had little effect.

In Florida, plot-averaged aboveground biomass (Fig. 2F) and
stem density (including all stems in original plantings and emer-
gent runners and thus a measurement of clump expansion in the
2 × 2 m plot; Fig. 3A), and maximal runner length (reflecting dis-
persal potential; Fig. 3B) were all lower at low vs. high elevations,

Fig. 1. Dispersed configurations are widely used in wetland restorations
globally ( A–F) and in the United States ( G). (A) Marsh restoration in Jamaica
Bay, NY. Reprinted with permission from Don Riepe/American Littoral So-
ciety. (B) Tidal wetland restoration in Maryland. Reprinted with permission
from Griff Evans/Ecological Restoration and Management, Inc. ( C) Salt marsh
restoration in Beaufort, NC. Reprinted with permission from Tess Malije-
novsky. (D) Wetland restoration on a site previously used for agriculture in
Australia (Creative Commons license 3.0 noncommercial attribution; pho-
tography by Nick Carson). ( E) Mangrove restoration project in Puerto Rico.
Reprinted with permission from Kyle Wicomb. ( F) Seagrass planting in Little
Narragansett Bay, CT. Reprinted with permission from Cornell Corporative
Extension of Suffolk County ’s Eelgrass Restoration Program. (G) Survey of
planting designs of US salt marsh restoration organizations. Twenty-five
organizations from 14 states were asked to provide estimates of the
minimum and maximum spacing of salt marsh grass plugs in restoration
projects, and to classify their plantin g project designs as either clumped
(spacing < 6 in) or dispersed. A list of the surveyed organizations is pro-
vided in Table S1.
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positive interactions can increase efficacy of conservation efforts.
The yield enhancements generated from incorporating positive
species interactions are not trivial, as billions of US dollars will be
spent in the near future as coastal defenses shift from ones that
are man-made only to ones that integrate protection generated by
both natural and engineered systems (59, 60). For instance, as part
of the Gulf Coast cleanup initiative following the Deep Water
Horizon Oil Spill and the recent US Restoration Act, considerable
effort will likely be undertaken to restore and expand degraded
marshes through plantings in mudflat areas. Because restoration is
rapidly becoming a key conservation tool to enhance both eco-
system services and biodiversity worldwide, we suggest that
expanding the current paradigm to incorporate facilitation theory
into restoration designs has real potential to enhance the scale and
success of conservation investments.

Methods
Fieldwork was conducted in the Gulf of Mexico at Fort DeSoto, Tampa,
Florida (N 27°36′56″, W 82°44′09″) from February to October 2009, and in
Baarland, The Netherlands (N 51°24′30″, E 3°53′6″) from April to September
2011. Marshes at both sites were characterized by visibly sandy soils (i.e.,
more sandy than is typical for a fully mature salt marsh that has high con-
centrations of organic matter). Salinities in surrounding waters averaged
∼24–28 ppt. In Florida, the tidal range was ∼1.20 m, whereas in The Netherlands
the range was much larger at ∼2 m.

At each site, we manipulated the configuration of marsh grass transplants
(clumped vs. dispersed) in two marsh elevations (low vs. high) using a 2 × 2
factorial design. This design generated four treatment combinations: low
dispersed, low clumped, high dispersed, and high clumped. Low and high
elevations at both sites were determined by comparison with high and low
marsh environments in nearby marshes as identified by plant species. Plots
were established at elevations that were midway in the elevation range of
the nearby low marsh (low elevation plots) and just above the border be-
tween the high and low marsh areas (high elevations). In Florida, the dif-
ference in elevation between elevations was ∼40 cm; in The Netherlands,
the difference in elevation between elevations was ∼70 cm. Both elevations
at both sites were flooded daily by the tides. Clumped treatments allowed
propagules to be in contact with each other and thus interact, whereas
dispersed designs represented the current restoration paradigm and did not
allow interaction among transplants. Replicate 2 × 2 m plots of unvegetated
mudflats were located and marked in both the high and low elevations
(n = 5 per treatment in Florida; n = 8 per treatment in Baarland). Trans-
plant plugs were 10 × 10 × 10 cm and consisted of the dominant marsh
grass Spartina alterniflora in Florida, obtained from Tampa Bay Watch, and
Spartina anglica in Baarland, obtained on-site. Plots in each elevation were
randomly assigned as either clumped or dispersed. In clumped treatments,
nine transplant plugs were planted in the middle of each plot so that all

plugs were touching. In dispersed treatments, nine plugs were planted at
equal distances from each other (50 cm in all directions).

Survival of each marsh transplant plug and stem density in each plot were
quantified at the end of the experiment. Survivorship of plugs was assessed
by noting presence or absence of each live plug. As a first measure of plot-
level yield and colonization success, plot-averaged density was assessed by
counting all stems present in each 2 × 2 m plot. We estimated aboveground
plant biomass in each plot using stem height to stem biomass regressions
combined with stem density measurements and stem height frequency dis-
tributions (61). To assess treatment impacts on expansion rates, we mea-
sured maximum lateral extension of runners from all plugs in each plot. To
do so, we measured the maximum distance that any surviving transplant in a
plot (either dispersed or clumped) grew clonally and recorded it as a single
datum point for that plot. We also measured sediment redox potential, a
proxy for soil oxygen levels (42, 62), with a soil redox probe (Orion Redox/
ORP Electrode) in August following the methods of Silliman and Zieman (63).
We measured redox potential at 10-cm depth in the middle of the root zone.
We also measured the edge erosion stress experienced by the marsh trans-
plants in The Netherlands, where edge erosion stress was quickly apparent in
all replicates and is typically experienced by colonizing Spartina clumps in this
area due to its relatively higher currents (44). This heightened erosion around
the edges of establishing Spartina causes stress and, at times, death to the
plants (44). To assess total area of erosive edge on the side of each trans-
planted plug and how that varies with our treatments, we measured the
height of all escarped edges of each transplant in each plot at the beginning
and end of the experiment. The difference between these measurements was
the depth of the erosive edge. If an edge was erosive, we also measured the
total length of the erosive edge. We then computed the total area of erosive
edge for each transplant by multiplying the average depth of the edge for
that plot by the total length of erosive edges. Edge erosion stress was not
measured in the Florida study site, where erosive edges never formed.

The effects of configuration and elevation on each response variable were
analyzed using two-way Analysis of Variance (ANOVA) in R version 3.0.2 (64).
Density, biomass, and edge erosion stress measurements from The Netherlands
were square root, third root, and log transformed, respectively, to satisfy the
assumption of normality for ANOVAs. Beta regression analysis was applied
to survivorship data in both sites, where ANOVA assumptions of normality
could not be met (65).
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