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Phytophthora species are potent pathogens that can devastate terrestrial

plants, causing billions of dollars of damage yearly to agricultural crops

and harming fragile ecosystems worldwide. Yet, virtually nothing is

known about the distribution and pathogenicity of their marine relatives.

This is surprising, as marine plants form vital habitats in coastal zones

worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease

may be an important bottleneck for the conservation and restoration of these

rapidly declining ecosystems. We are the first to report on widespread infec-

tion of Phytophthora and Halophytophthora species on a common seagrass

species, Zostera marina (eelgrass), across the northern Atlantic and Mediter-

ranean. In addition, we tested the effects of Halophytophthora sp. Zostera

and Phytophthora gemini on Z. marina seed germination in a full-factorial lab-

oratory experiment under various environmental conditions. Results suggest

that Phytophthora species are widespread as we found these oomycetes in

eelgrass beds in six countries across the North Atlantic and Mediterranean.

Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected

sexual reproduction by reducing seed germination sixfold. Our findings

have important implications for seagrass ecology, because these putative

pathogens probably negatively affect ecosystem functioning, as well as

current restoration and conservation efforts.
1. Background
Phytophthora species, fungi-like oomycetes, are known to be pathogenic to many

terrestrial plants species, causing a range of symptoms including root rot, stem

rot and leaf blight. Phytophthora diseases yearly cause high economical damage

to agriculture and loss of fragile ecosystems [1]. Phytophthora infestans, or potato

blight, the best-known Phytophthora species, caused a massive die-off of

potato plants in the nineteenth century, resulting in the death of millions

during the great Irish famine [2–4]. Even today, potato loss due to this pathogen

is estimated at more than 1 billion euros yearly in the European Union only [5].

Another member of the Phytophthora genus, Phytophthora ramorum, is currently

harming forest ecosystems in California by causing mass mortality in oaks [6,7].

Phytophthora ramorum is a very successful invasive pathogen that can infect over
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109 recorded host species. Its use of more resistant hosts to

maintain infectious stages, makes it very difficult to combat

[8,9]. In addition, invasive Phytophthora species may also

cause great harm to fragile systems and communities, such as

in southwest Australia, where Phytophthora cinnamomi has

infected many endemic tree species, turning eucalyptus forest

into grass-dominated savannahs [10].

In contrast to the extensive knowledge of terrestrial infec-

tions, not much is known about marine Phytophthora species

[1]. Only recently, two species of Phytophthora, Phytophthora
gemini and Phytophthora inundata, were discovered in plant

material and seeds of eelgrass, Zostera marina, from The

Netherlands [11]. Similarly, Halophytophthora species are

commonly found in salt water systems. However, Halophy-
tophthora species, inhabiting brackish and salt water

habitats, were recently positioned in a genus separate from

Phytophthora and seem only distantly related to Phytophthora
species based on rDNA-ITS sequences [12]. Halophytopthora
species have, in contrast to pathogenic Phytophthora species,

only been described as saprophytes—organisms living on

organic matter—that play an important role as decomposers

in primarily mangrove ecosystems [13–15]. Although some

saprophytes can become pathogenic under favourable

conditions [16,17], virtually nothing is currently known

about possible pathogenicity of marine Phytophthora and

Halophytophthora spp. species on marine plants [11].

The ambiguity about the potential pathogenicity of marine

Phytophthora and Halophytophthora species is disconcerting

because recent findings show that at least two Phytophthora
species can contaminate marine plants [11] (electronic sup-

plementary material, table S1). Massive disease-driven

die-offs of seagrasses [18,19] and mangroves [20,21] illustrate

the potential harm to a population as a consequence of an out-

break. For instance, the pathogen Labyrinthula zosterae was the

purported pathogen responsible for the loss of up to 90% of the

Z. marina beds across the North Atlantic region in the 1930s

[19,22], which eventually resulted in the loss of ecological

properties such as the rich faunal or waterfowl communities

often associated with Z. marina [23,24]. Thus, the ecological

ramifications of such large die-offs are not limited to the

infected species alone.

Marine plants such as salt marsh plants, mangroves and

seagrasses are typically habitat-forming species that are vital

to ecosystem functioning and provide important ecosystem

services (e.g. flood protection, carbon and nutrient storage,

biodiversity enhancement) [25–28]. In addition, these vege-

tated coastal ecosystems are globally disappearing [29,30],

and costly restoration efforts, with various success rates, are

being undertaken to halt and revert these losses. Given the

vital functions of marine plants, their worldwide declines,

and the restoration efforts being undertaken to reverse these

losses, it is important to identify agents of infection that may

contribute to declines or may prevent successful restoration.

Although few studies have reported on Phytophthora pres-

ence on marine host plants (electronic supplementary material,

table S1), it remains unclear (i) how widespread Phytophthora
and related Halophytophthora species are in vegetated marine

ecosystems, (ii) if these marine Phytophthora and Halophy-
tophthora species are harmful to foundation species such as

seagrasses and (iii) which environmental conditions promote

infection. We therefore used the widespread marine foun-

dation species Z. marina as a model species and collected

Z. marina plant material from across six countries to determine
Phytophthora spp. and Halophytophthora spp. presence across

the North Atlantic and Mediterranean region. Secondly, we

conducted a laboratory experiment to determine potential

harmful effects of P. gemini and Halophytophthora sp. Zostera

under various environmental conditions.
2. Material and methods
(a) Collection of seed material and pre-treatment
To investigate the potential occurrence of Phytophthora and Halo-
phytophthora species in Z. marina across the Atlantic, we obtained

representative samples of Z. marina leaves and seeds from

Denmark (Limfjord, 56.9138 N, 9.9938 E), Sweden (Lindholmen,

57.7038 N, 11.9398 E), The Netherlands (Oosterschelde 51.6728
N, 4.1318 E), France (Thau Lagoon, 43.4468 N, 3.6638 W) and

the USA (Chesapeake Bay, VI, 37.5678 N, 76.1018 W). These

sites were chosen based on the availability of seed material

from restoration projects on these sites. These seeds were not

used for the experiment, but analysed for only the presence of

Phytophthora and Halophytophthora species, as described below.

For the experiment, we collected 6 kg of Z. marina above-

ground biomass, including seed material, on the island of

Sylt, Germany (54.7998 N, 8.2968 E) in early September 2014.

The material was transported to the laboratory where seeds

were removed from seed-bearing shoots. For the experiment,

we carefully selected seeds under the microscope with ethanol-

disinfected equipment in order to select only fully developed,

mature seeds with a hardened seed coat, to mimic natural seed

development [31]. Selection was needed, as half of the harvested

seeds had not yet matured on the shoot and using these would

have biased the outcome of our experiment. A subset of these

seeds (160 seeds) was individually tested for Phytophthora spp.

or Halophytophthora spp. infection before the start of the

experiment, using both visual and molecular techniques as

explained below.

(b) Experimental set-up
We tested the effects of winter temperature and sediment type—

two main factors controlling winter survival of organisms (and

thus both seeds and Phytophthora) buried in the sediment

[32]—on Phytophthora infection and seed germination in a

full-factorial laboratory experiment with four treatments and

16 replicates per treatment. Both sediment types and winter

temperatures reflected field conditions encountered in restoration

experiments in the Dutch Wadden Sea, yielding variable results

with regard to restoration success. We applied two temperatures

(5.48C and 12.48C) mimicking cold and warm winters in the

Dutch Wadden Sea [33]. These treatments were crossed with

two sediment types: sandy and muddy sediment (electronic sup-

plementary material, table S2) from two contrasting sites where

eelgrass restoration experiments have been conducted since

2011. The sediment was sieved (5 mm) and homogenated prior

to the start of the experiment. The sediment was tested for

Phytophthora and Halophytophthora presence, but no Phytophthora
or Halophytophthora was found in the sediment.

The experiment was conducted in 0.5-m high round glass

tubes with a diameter of 60 mm. To each experimental unit, we

added a 0.2 m sediment layer and a 0.25 m layer of synthetic

seawater (27‰). Every experimental unit was equipped with a

separate pump for aeration to prevent cross-infection among

experimental units. This system was sufficient to aerate the

entire water column, which is representative of the Wadden

Sea winter conditions [34]. Treatments were randomly assigned

to the experimental units. After addition of sediment and

water, tubes were left for 2 days to ensure sediment stabilization,

after which 10 seeds were added to each experimental unit with
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ethanol-disinfected forceps to prevent cross-infection of seeds.

Seeds were subsequently covered by an approximately 5 mm

layer of sediment to mimic natural conditions in the field.

Seeds were incubated for 110 days in the experimental units

and salinity and temperature were checked twice weekly. After

110 days, the experiment was terminated and the sediment

from each unit was carefully sieved (800 mm) to retrieve seeds.

On average, 8.3 out of 10 seeds were retrieved from each tube,

13% of the seeds had already germinated before retrieval (69 of

the 531 retrieved seeds), with no effects of treatments. Seeds

that had already germinated during the experiment were treated

similar to the other seeds for further analysis. Retrieved seeds

were individually stored in 1.5 ml Eppendorf tubes filled with

200 ml, 23‰ seawater at 48C for 2 days. Subsequently, tubes con-

taining seeds were moved to the specialized Phytophthora
laboratory for further analysis.
(d ) (e)

Figure 1. Colony morphology of Phytophthora gemini and Halophytophthora
sp. Zostera on ParpH medium. (a) Zostera marina seeds are individually
cultured on ParpH medium to determine infection. All seeds in this picture
are infected by P. gemini and the seed in the right corner (well A3) is infected
by both P. gemini and Halophytophthora sp. Zostera. (b) Colony morphology of
P. gemini on CHA, (c) colony morphology of Halophytophthora sp. Zostera on
CHA, (d ) colony morphology of P. gemini on PDA, and (e) colony morphology
of Halophytophthora sp. Zostera on PDA. (Online version in colour.)

.B
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(c) Visual identification of Phytophthora and
Halophytophthora species

All seeds, those from the survey and the experiment, including

germinated seeds, were individually placed on sterile 12 wells

tissue culture plates with a growth area of 3.8 cm2 and a selective

growth medium (ParpH) [35]. ParpH is an oomycete-selective

agar growth medium to which selected antibiotics are added to

promote growth of Phytophthora, Halophytophthora and Pythium
species and to suppress growth of non-pythiaceous fungi [35].

Seeds were incubated on ParpH for four weeks in total with

a natural daylight cycle at room temperature (18–208C) with

2–3 ml of artificial seawater (20‰) added to every well/seed.

After 3 and 7 days, the presence or the absence of P. gemini
and Halophytophthora sp. Zostera was scored for each individual

seed (531 in total) by visual identification, based on colony

morphology on ParpH (figure 1a) [35]. To distinguish between

the two species, branching and roughness of the mycelium was

checked by microscope (100�). Visual identification of the oomy-

cetes grown on ParpH was checked on 22% of the infected seeds

[36] by growing the isolated oomycete on cherry decoction agar

(CHA) and potato dextrose agar (PDA), where colony mor-

phology of P. gemini and Halophytophthora sp. Zostera can

clearly be distinguished (figure 1b–e). Phytophthora gemini can

also be identified by the incidental double sporangia growth

on a sporangiophore (by microscope) when cultured on the

plate (electronic supplementary material, figure S2). By contrast,

Halophytophthora sp. Zostera does very rarely grow sporangia

when cultured and does not have double sporangia. More

detailed information about this method and microscopy on

P. gemini can be found in Man in ‘t Veld et al. [11]. In addition,

seed germination was scored up to four weeks of seed incu-

bation. A selection of four samples of colonies grown on CHA

was additionally identified by molecular analysis (see below).

Additionally, to test whether P. gemini and Halophytophthora
sp. Zostera were not only present on the seed coat, but also

within the seed itself, we determined P. gemini and Halophy-
tophthora sp. Zostera growth on ParpH of a separate selection of

smashed seeds (not used in the experiment) of which seed coats

were first thoroughly disinfected by ethanol and hypochlorite.
(d) Molecular identification of Phytophthora and
Halophytophthora species

Isolations of P. gemini and Halophytophthora sp. Zostera were

made from Z. marina seeds on ParpH agar containing pentachlor-

onitrobenzene (Sigma/P7626) 25 mg l21, pimaricin (Sigma/

P-440) 0.0005%, ampicillin (Sigma/A-9393) 250 mg l21, rifampicin

(Sigma/R-8626) 10 mg l21 and hymexazol (Sigma/T-4014)

50 mg l21. Outgrowing colonies were transferred to CHA [37].
Pure mycelium with a surface area of 1 cm2 was placed in a

1.5-ml micro centrifuge tube with a secure flattop cap (Superlock

tubes; BIOzymTC) containing a stainless steel bead (4 mm diam-

eter) and 300 ml of extraction buffer (0.02 M phosphate-buffered

saline, 0.05% Tween T25, 2% polyvinylpyrrolidone and 0.2%

bovine serum albumin). The tube was placed in a bead mill

(Mixer Mill MM300; Retsch) for 80 s at 1800 beats min21. The

mixture was centrifuged for 5 s at maximum speed in a micro

centrifuge at 16 100g and 75 ml of the resulting supernatant was

used for DNA isolation.

Automated DNA isolation was performed with the KingFisher

96 magnetic particle processor (Thermo Electron Corporation,

Breda, The Netherlands) using the QuickPick Plant DNA kit

from Bio-Nobile (Isogen Life Science, IJsselstein, The Netherlands),

according to a protocol developed by the manufacturer. Briefly,

5 ml of proteinase K and 50 ml of lysis buffer were added to 75 ml

of the supernatant described above. After 30 min of incubation at

658C, 5 ml of MagaZorb Magnetic Particles and 125 ml of binding

buffer were added. Particle-bound DNA was washed twice with

200 ml of washing buffer and DNA was eluted in 50 ml of elution

buffer and further purified using polyvinylpolypyrrolidone

(PVPP) (Sigma, Zwijndrecht, The Netherlands) columns. The

columns were prepared by filling Axygen Multi-Spin columns

(Dispolab, Asten, The Netherlands) with 0.5 cm of PVPP, placing

http://rspb.royalsocietypublishing.org/
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them on empty reaction tubes, and washing twice with 250 ml of

DNase- and RNase-free water by centrifuging the columns for

5 min at 4000g. The DNA suspension was applied to a PVPP

column and centrifuged for 5 min at 4000g. The flow-through

fraction was used as the template for sequence analysis.

The complete nuclear rDNA ITS1–5.8S-ITS2 region was

amplified with primers ITS1 and ITS4 for Phytophthora [38] or

ITS4 and ITS5 for Halophytophthora using the PCR profile

described by Goodwin et al. [39]. Sequences were edited using

GENEIOUS v. 6.1.6 (Biomatters, New Zealand). Sequences were

aligned with selected sequences from GenBank and alignments

of sequences were made by Muscle using MEGA 5.05. Phylo-

genetic analysis was performed by neighbour joining using

MEGA 5.05. Bootstrapping was done with 1000 replicates.
(e) Chemical sample analysis
In addition, we conducted analyses of sediment characteristics

and sediment biogeochemistry, because winter sediment

conditions may affect seed viability and infection. Before the

start of the experiment, four sediment samples per sediment

type were dried (48 h, 608C). Sediment grain size was analysed

on sieved (1 mm) samples by laser diffraction on a Malvern

(Master 2000, UK) particle size analyser. Sediment organic

matter content was determined by weight loss on ignition at

5508C. Porewater for sulfide measurements was sampled 2

days prior to the end of the experiment using Rhizon soil moist-

ure samplers (Eijkelkamp Agrisearch Equipment, Giesbeek,

The Netherlands). Sulfide was measured according to the

method described in Govers et al. [36]. We measured porewater

sulfide concentrations since this indicates sediment anoxia (sul-

fide is only produced in anoxic conditions), and sulfide is toxic

to most eukaryotic life, including marine plants [40] and perhaps
also oomycetes, potentially affecting seed survival and infection

by Phytophthora and Halophytophthora species.

( f ) Statistical analysis
Infection and germination were analysed using generalized

linear mixed models (GLMM, lme4-package in R v. 3.01) with

binomial distribution. Treatments were included as fixed factors

(sediment and winter temperature), and experimental unit was

included as random factor. First, we tested the complete model

with all treatments and interactions and stepwise reduced the

model by excluding non-significant interactions, starting with

the most complex interactions. By this method, we reduced the

statistical model until only significant factors were left [41].

GLMM results are reported as B ¼model estimate, s.e. B ¼ stan-

dard error of B, z value, and p-value. P-values of less than 0.05

were considered statistically significant. Total effects of infection

(infected or not, regardless by which species) and differences

between P. gemini and Halophytophthora spp. were additionally

analysed by x2-tests. Results from the sulfide measurements

were tested by a two-way ANOVA on log-transformed data.

Normality of the data was checked on the residuals.
3. Results
Phytophthora spp. and Halophytophthora spp. infection on

Z. marina appears to be widespread across the Atlantic

(figure 2), as we discovered four different Phytophthora and

Halophytophthora species within Z. marina seeds and on plant

material from six different countries. We found P. gemini in

Z. marina seeds from Sweden (Lindholmen), P. inundata in

seed material from Denmark (Limfjord), P. gemini (GenBank

http://rspb.royalsocietypublishing.org/
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ID. KT986006) and Halophytophthora sp. Zostera (GenBank ID.

KT986007) in both seed and plant material from Germany

(Sylt) (electronic supplementary material, figure S1), and an

unknown species of Phytophthora (GenBank ID: Man in ‘t

Veld et al. [42]) in seed material from Chesapeake Bay,

United States, and unknown Halophytophthora species in

seed and plant material from France (Thau lagoon) and

The Netherlands (Oosterschelde).

Ninety-nine per cent of all collected seeds, including

those used in the experiment, were infected by either Halo-
phytophthora sp. Zostera, P. gemini or both species as tested

after collection, prior to the incubation experiment. Forty-

nine per cent of these seeds were infected by Halophytophthora
sp. Zostera, 18% by P. gemini, and 33% were infected by both

oomycete species. On average, 38% of these infected seeds

germinated, which indicates that infection is not only associ-

ated with dead seeds. Surprisingly, percentages of infection

were reduced after 110 days of incubation in the sediment.

Only 34% of all seeds remained infected, whereas 66% of

the seeds were no longer infected (figure 3a). As we retrieved

83% of all seeds, this shift could not be explained by seed loss

in the experiment. Of all seeds after incubation, 12% were

infected by Halophytophthora sp. Zostera, 18% by P. gemini
and 4% by both species.

Environmental conditions during incubation strongly

affected (the reduction of) infection of Z. marina seeds by

P. gemini and Halophytophthora sp. Zostera (figure 3b). In sand,

1.8� more seeds were infected than in mud (43 versus 24%

respectively, GLMM: B ¼ 0.9809, s.e. B ¼ 0.2684, z ¼ 3.655,

p , 0.001), and in the lower winter temperature, 1.7� more

seeds were infected compared with the higher winter tempera-

ture (42 versus 24%, respectively, GLMM: B ¼ 20.9627, s.e.

B ¼ 0.2671, z ¼ 23.604, p , 0.001). The effects of these envi-

ronmental factors on Z. marina seed infection were very

similar for both oomycete species (GLMM: P. gemini winter

temperature, B ¼ 20.9968, s.e. B ¼ 0.3592, z ¼ 22.775, p ¼
0.005, sediment type, B ¼ 0.9284, s.e. B ¼ 0.3586, p ¼ 0.009,

Halophytophthora sp. Zostera winter temperature B ¼ 21.1099,

s.e. B ¼ 0.4062, z ¼ 22.733, p ¼ 0.006, sediment type B ¼

1.2768, s.e. B ¼ 0.4152, z ¼ 3.075, p ¼ 0.002).

Infection had strong, negative effects on Z. marina seed

germination (figure 4, x2, p , 0.001). Infected seeds had
6� lower germination than non-infected seeds, as only 4%

of the infected versus 23% of the non-infected seeds

germinated. Both Halophytophthora sp. Zostera and P. gemini
had similar negative effects and did not differ in putative

pathogenicity (x2, p ¼ 0.55).

Environmental conditions (winter temperature, sediment

type) did not directly affect seed germination of Z. marina.

Only infection by either or both P. gemini and Halophytophthora
sp. Zostera (negatively) affected seed germination (GLMM:

B ¼ 22.1576, s.e. B ¼ 0.4395, z ¼ 24.910, p , 0.001), reducing

germination by six times. This trend was similar for both

Halophytophthora sp. Zostera and P. gemini (GLMM: P.
gemini, B ¼ 21.6769, s.e. B ¼ 0.4824, z ¼ 23.476, p , 0.001,

Halophytophthora sp. Zostera, B ¼ 22.9289, s.e. B ¼ 1.0211,

z ¼ 22.868, p ¼ 0.004).

Sulfide concentrations of the sediments were generally

low (less than 5 mmol l21), although warmer winter temper-

atures resulted in significantly higher sulfide production in

the muddy sediment (30 mmol l21, F1,53 ¼ 7.22, p ¼ 0.009)

due to higher decomposition rates.
4. Discussion
Until now, nothing was known about the presence and

potential harmful effects of Phytophthora and Halophytophthora
species on marine vascular plants [11,43]. Here, we showed

for the first time that occurrence of Halophytophthora sp. Zos-

tera and Phytophthora spp. is widespread in plant and seed

material of the marine foundation species Z. marina, with

natural infection numbers as high as 99%. Moreover, we pro-

vide the first account of putative pathogenicity of P. gemini
and Halophytophthora sp. Zostera on Z. marina, as germination

of seeds infected by either or both species was nearly six

times lower. Overall, these findings suggest that both Halo-
phytophthora sp. Zostera and Phytophthora spp. are common

in Z. marina beds, and that, depending on prevailing environ-

mental conditions, these oomycetes can hamper sexual

reproduction in Z. marina populations by decreasing seed

germination.

Clearly, our analyses do not yet provide definitive proof

for pathogenicity of P. gemini and Halophytophthora sp.

http://rspb.royalsocietypublishing.org/
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Zostera according to Koch’s postulates. Yet, we suggest it is

unlikely that both species merely acted as saprophytes in

our experiment. First, because both were already present on

healthy, living seed material (over 38% germinated at the

start), which is highly unusual for saprophytes, but general

behaviour for pathogens that need to colonize living plants

[44]. Second, all known Phytophthora species display patho-

genic behaviour to some degree [1] and have very limited

ability to compete as saprophytes [45,46].

Although previously considered as tropical to subtropical

saprophytes [15,47], more recently, Nigrelli & Thines [48] iso-

lated two Halophytophthora species (sp. 1 and sp. 2) from leaf

litter from a temperate coastal area (German Bight). Low

temperature preference indicated that these strains had prob-

ably been overlooked, and not recently introduced. This may

also be the case for the strain reported here, which is only the

second account of Halophytophthora spp. in a temperate area.

Previously overlooked contact between seagrasses and Halo-
phytophthora spp. is also suggested from multiple tropical

seagrass species that were found to produce secondary

metabolites that inhibit growth of Halophytophthora spinosa
[49,50]. As marine algae are known to produce many

defensive secondary metabolites [51], it is possible that anti-

bacterial and anti-fungal defences are also widespread

among seagrasses, as anti-fouling mechanisms or to prevent

infection by pathogens [50]. The decline from 99 to 34% infec-

tion over the course of our experiment may also indicate the

presence of such defences. Nevertheless, as virtually all

Z. marina seeds became infected and many remained infected

with lack of germination as an apparent consequence, any

potential chemical defences against the Phytophthora and

Halophytophthora species reported here seem insufficient.

We found that environmental conditions in winter

strongly affected the infection. Surprisingly, we observed a

drop in infection by both Halophytophthora sp. Zostera and
P. gemini during the simulated winter period in all treat-

ments. Apart from potential chemical defences, this may be

due to low winter temperatures. Winter is generally con-

sidered the major period of pathogen mortality, with higher

winter temperatures generally lessening this bottleneck [52].

Contrastingly, however, we found less infected seeds in the

high-temperature treatment (figure 3b). Thus, although

winter appears to be a bottleneck for Halophytophthora sp.

Zostera and P. gemini both species seem to prefer colder

(58C) over warmer winter temperatures (128C).

Apart from temperature, sediment conditions also

affected infection: in sand 1.8� more seeds remained infected

compared with mud. This may be attributed to the local sedi-

ment characteristics, as the organic, fine-grained muddy

sediment promoted decomposition rates of organic matter,

resulting in anoxic conditions with enhanced sulfide levels

(see Material and methods—Experimental set-up). Similar

to other Phytophthora species [53,54], both P. gemini and Halo-
phytophthora sp. Zostera survival were suppressed by anoxic

conditions. This may be due to lack of oxygen or the pro-

duction of sulfide (up to 180 mmol l21 in our experiment),

which is toxic to many organisms, including seagrasses

[40,55–57].

Wasting disease was previously the only well-known dis-

ease in Z. marina, causing large-scale declines in Z. marina
beds across the Atlantic in the 1930s [18,19]. The Labyrinthulo-

mycete Labyrinthula zosterae, a genus related to Phytophthora,

has been identified as the pathogen causing wasting disease

[58,59]. Although L. zosterae has been shown to be able to

cause wasting disease symptoms [58], not all species from

the Labyrinthula genus are pathogenic [59]. Indeed, recent

work has shown that current isolates from European

Z. marina populations display varying virulence [60,61], and

Labyrinthula spp. seem to be very common in northern

Z. marina beds [62]. This implies that L. zosterae may not be

pathogenic under non- or low-stress conditions [60,63,64],

possibly as a result of low pathogenicity, a strong defence reac-

tion of the host, or both. Given our finding of additional

putative pathogens in Z. marina beds, we may have to revisit

the pathology of Z. marina, and perhaps also of seagrasses in

general. It is highly conceivable that Phytophthora spp. and

Halophytophthora spp. have been infecting Z. marina popu-

lations across the Atlantic for some time, and perhaps even

in concert with Labyrinthula zosterae. Wasting disease-infected

Z. marina plants may have been more susceptible to infection

by Phytophthora and Halophytophthora species and vice versa.

Hence, it is even possible that these oomycetes contributed

to the epidemic of wasting disease in the 1930s.
5. Implications for conservation
Our results demonstrate that Phytophthora spp. and Halophy-
tophthora spp. are likely common in Z. marina beds across the

North Atlantic and Mediterranean, and suggest that both are

pathogenic on seeds, with potentially important implications

for Z. marina sexual reproduction and population fitness.

This in turn may affect restoration and conservation efforts,

especially in intertidal Z. marina populations that depend

almost entirely on sexual reproduction. Of all seagrass restor-

ation trials initiated in the last decades (less than 1700), over

50% aimed to restore Z. marina beds [65]. This means that

pathogens affecting seagrass restoration efforts can be very

http://rspb.royalsocietypublishing.org/
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costly. For instance, based on our experimental results, we

estimate that Phytophthora or Halophytophthora infection have

reduced seed germination by at least 44% in current

Z. marina restoration projects in the Dutch Wadden Sea.

Our novel insights into these pathogens allow us to opti-

mize sediment conditions. For example, our study shows that

anoxia during incubation may reduce infection—which

appears to be unknowingly applied in restorations with

seed from Chesapeake Bay, where seed germination is high-

est following storage in low oxygen conditions [31]. Our

findings emphasize the need for a mechanistic understanding

of such results and call for the development of potentially

more efficient mechanism-based methods to reduce infection

such as seed treatment with copper-based compounds or

phosphonates [66–68].

As this is the first study showing putative pathogenicity

of P. gemini and Halophytophthora sp. Zostera, we are only

scratching the surface of the consequences of oomycete infec-

tions for Z. marina and marine plants in general. Considering

potent pathogenicity of species of the Phytophthora genus,

some urgent questions arise: can we definitively identify

these putative pathogens as causal agents of the observed

symptoms (decreased germination) according to Koch’s

postulates? Are these oomycetes only putatively pathogenic

to Z. marina, or also to other seagrasses or marine plant

species? What plant life stages (seed, seedling, adult, seed

production) do Phytophthora and Halophytophthora species

affect? Does Z. marina produce anti-fungal secondary metab-

olites to inhibit Phytophthora and Halophytophthora species as

observed in tropical species? What conditions promote
or reduce infection? We thus stress the need for further

research on Phytophthora and Halophytophthora infections of

marine plant species that often form the ecological foun-

dation of coastal ecosystems, and are increasingly targeted

for conservation and restoration [69].
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